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Information theory

• Counts among the foundations of computer science

• Pioneered by Claude Shannon

• Important for data compression, error-free transimission,

and . . .
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Claude E. Shannon (1916-2001)

Most outstanding results of his work:

• brought Boolean algebra into circuit design

• introduced a mathematical theory of communication

• proved Nyquist’s Sampling Theorem

• . . .

• Most important for us here:

first rigorous analysis of cryptosystems

(source: http://en.wikipedia.org)
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Cryptosystems

Usually:

• Alfons and Boris secretly agree about a key k

• Alfons encrypts Tk(m) = c, sends it to Boris

• Boris decrypts T−1
k (c) = m

• Ivan (the Terrible) intercepting c, tries to figure out m

(or, worse, k)
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In Shannon’s view (Shannon 1949):

• Alfons is a statistical message source

• The key choice is a statistical information source,

transmitted over a secure channel

• Ivan knows a priori probabilities for

– m (natural language)

– and k (habits of key choice)

• after intercepting c: a posteriori probabilities for m and k

• Ivan has unbounded time and computational power (!)

• Kerckhoffs’ principle: (Kerckhoffs 1883, Shannon 1949)

Ivan knows the encryption mechanism.

Can he gain statistical information about m from c?
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Perfect Secrecy

Definition.(Shannon 1949)

A cryptosystem with probability distributions on message

space M and keyspace K is said to be perfectly secret, if

for all ciphertext messages c and all messages m holds

Pr[m | c] = Pr[m]
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Example: One-Time Pad

aka Vernam-Cipher (Gilbert Vernam, 1926, patented 1919)

• M = K = C = {0, 1}n

• keys are chosen equiprobable

• encryption/decryption: bitwise modulo-2-addition of key

and message

• key is only used once.

(Not that the key is as long as the message.) Can we prove

that this system is perfectly secure?
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Toolbox.

Ivan intercepts c and wants to know a posteriori (conditional)

distribution on M.

Bayes’ theorem.

If P [C = c] > 0, then

P [M = m | C = c] =
P [C = c | M = m]P [M = m]

P [C = c]

C and M are independent iff

P [M = m | C = c] = P [M = m].
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Toolbox (cont’d).

Set of possible keys for cipher c:

K(c) = {k ∈ K | ∃m ∈ M : Tk(m) = c}

Set of possible keys for m and c:

K(c, m) = {k ∈ K | Tk(m) = c}.
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Toolbox (cont’d).

Set of possible keys for cipher c:

K(c) = {k ∈ K | ∃m ∈ M : Tk(m) = c}

Set of possible keys for m and c:

K(c, m) = {k ∈ K | Tk(m) = c}.

Then

P [C = c] =
∑

k∈K(c)

P [K = k]P [M = T−1
k (c)]

and

P [C = c | M = m] =
∑

k∈K(c,m)

P [K = k]

. . . into Bayes’ formula ⇒ P [M = m | C = c].
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Return to One-time Pad.

We have to show P [M = m | C = c] = P [M = m]

For every k, we have P [K = k] =
(

1
2

)n
. So

P [C = c] =
1

2

n
∑

k∈K(c)

P [M = T−1
k (c)]
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Return to One-time Pad.

We have to show P [M = m | C = c] = P [M = m]

For every k, we have P [K = k] =
(

1
2

)n
. So

P [C = c] =
1

2

n
∑

k∈K(c)

P [M = T−1
k (c)]

For every pair 〈m, c〉, there is a unique key K(c, m) = {k}, so

∑

k∈K(c)

P [M = T−1
k (c)] =

∑

m ∈ MP [M = m] = 1
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Return to One-time Pad.

We have to show P [M = m | C = c] = P [M = m]

For every k, we have P [K = k] =
(

1
2

)n
. So

P [C = c] =
1

2

n
∑

k∈K(c)

P [M = T−1
k (c)]

For every pair 〈m, c〉, there is a unique key K(c, m) = {k}, so

∑

k∈K(c)

P [M = T−1
k (c)] =

∑

m ∈ MP [M = m] = 1

. . . and P [C = c] =
(

1
2

)n
.
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Return to One-time Pad(cont’d).

Assume c = Tk(m). Then

P [C = c | M = m] = P [K = k] =
(

1
2

)n
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Return to One-time Pad(cont’d).

Assume c = Tk(m). Then

P [C = c | M = m] = P [K = k] =
(

1
2

)n

Putting these results into Bayes’ formula yields

P [M = m | C = c] =

(

1
2

)n
P [M = m]
(

1
2

)n
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Return to One-time Pad(cont’d).

Assume c = Tk(m). Then

P [C = c | M = m] = P [K = k] =
(

1
2

)n

Putting these results into Bayes’ formula yields

P [M = m | C = c] =

(

1
2

)n
P [M = m]
(

1
2

)n

and we are done.
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Characterization of Perfect Secrecy Systems.

With little more effort, one can show:

Perfect Secrecy Theorem (Shannon 1949)

A cryptosystem provides perfect secrecy if and only if

• |M | = |C| = |K|

• every key is used with equal probability 1/|K|,

• and for every message-cipher-pair 〈m, c〉, there is a

unique key k with c = Tk(m).

(Proof can be found in Stinson 2002.)



31.03.05 ◮◭ ⊳ ◭◭ ◮ 13

Consequences.

• Perfect Secrecy often impractical: key needs to be as long

as the message

Ways around:

• use of pseudo-random generators for Vernam cipher (e.g.

DES in OFB mode) (. . . but NO perfect secrecy!)

• different notion of secrecy: prove computational hardness

of code breaking

• Vernam cipher nevertheless in use for critical missions

(politics, military)
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More of Shannon’s ideas

• What if we use the same key more than once?

• Analysis again due to Shannon, using entropy.

• entropy H(X) measures the average degree of uncertainity

of a random variable X.
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Entropy

Definition. Entropy.

Let X be a random variable taking values 1,. . . ,n

H(X) = −

n
∑

i=1

P [X = i]log2P [X = i]
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Conditional Entropy and Key Equivocation.

Let Y be another random variables, taking values 1,. . . ,m

The conditional entropy H(X | Y ) is

H(X | Y ) =
m

∑

j=1

p(Y = j)H(X | Y = j)

Conditional entropy measures the average uncertainity about

X given observations of the variable Y.
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Key Equivocation.

Using conditional entropy for cryptosystem analysis:

How much average uncertainty remains about the key remains

provided we know the ciphertext?
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Key Equivocation.

Using conditional entropy for cryptosystem analysis:

How much average uncertainty remains about the key remains

provided we know the ciphertext?

H(K | C) is called the key equivocation.
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Key Equivocation (cont’d).

Shannon found that

H(K | C) = H(M) + H(K) − H(C)

In particular, for perfect secrecy systems, we have

H(K | C) = H(K).

That is, uncertainty about the key does not decrease with

knowledge of the ciphertext. (Shannon 1949)
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Conclusion

What we have encountered:

• Vernam Cipher

• Perfect secrecy

• Drawbacks in perfect secrecy

• Tools for analyzing “imperfect” systems
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